The conversion and control of electrical energy using power semiconductor devices is one of the most classical and challenging research areas in electrical engineering. The increasing application of power electronic systems, the development of new power semiconductors devices, the creation of new converter topologies, and specifically the development of more powerful microprocessors, with unprecedented calculation power, offers the possibility to design and implement new highly sophisticated and intelligent digital control and modulation algorithms for power converters. This special section is aimed to research academics and practicing engineers of the industrial electronics and industrial informatics communities to present their most recent findings related to digital control systems in power electronics. This special section presents to the power electronics community the most recent advances with topics such as the following:

- Modern digital control strategies and algorithms: dead beat control, model predictive control, fuzzy logic, neural networks, sliding mode control, etc.
- Modulation methods: pulse width modulation, space vector modulation, harmonic control based methods, etc.
- Advances in hardware implementation: FPGA, DSP, microcontrollers, etc.
- Application to all type of topologies in power electronics: voltage and current source inverters, DC-DC converters, multilevel converters, matrix converters, resonant converters, PWM rectifiers, etc.
- Application to all type of AC drives: synchronous machines, permanent magnets synchronous machines (PMSM), induction machines, etc. Special attention should be given to high performance control strategies and algorithms like field oriented control (FOC), direct torque control (DTC), and predictive torque control (PTC).
- Other applications like renewable energies and smart grids, transportation, mining, pulp and paper, etc.

It is our pleasure to present this Special Section on Digital Control Systems in Power Electronics and Electrical Drives. Due to the high number of good papers submitted, this Special Section has been divided in three parts. The papers of this first part are detailed in the next sections.

I. MODERN DIGITAL MODULATION AND CONTROL STRATEGIES

- A Family of Predictive Digital-Controlled PFC under Boundary Current Mode Control.
- Robust Model Predictive Current Control of Three-Phase Voltage Source PWM Rectifier with Online Disturbance Observation.
- A Digital Dual-state-variable Predictive Controller for High Switching Buck Converter with Improved \(\Sigma-\Delta \) DPWM.
- Instantaneous Reactive Power Minimization and Current Control for an Indirect Matrix Converter under a Distorted AC-supply.

II. ADVANCES IN HARDWARE IMPLEMENTATION

- A Comparison of Simulation and Hardware-in-the-loop Alternatives for Digital Control of Power Converters.
- FPGA Realization of Trapezoidal PWM for Generalized Frequency Converter.
- Multi-DSP and -FPGA Based Fully-Digital Control System for Cascaded Multilevel Converters used in FACTS Applications.

III. DIGITAL CONTROL IN DIFFERENT TOPOLOGIES AND AC DRIVES

- Digital Current Sharing Method for Parallel Interleaved DC-DC Converters using Input Ripple Voltage.
- Short-Circuit Fault Protection Strategy for High Power Three-Phase Three-Wire Inverter.
- Simulink Modeling and Design of an Efficient Hardware-constrained FPGA-PMSM Speed Controller.
IV. APPLICATIONS IN RENEWABLE ENERGY AND ELECTRIC VEHICLES

- Digital Control of Actual Grid-Connected Converters for Ground Leakage Current Reduction in PV Transformless Systems.
- Efficiency Optimization of a DSP-Based Standalone PV System using Fuzzy Logic and Dual-MPPT Control.
- A High Efficiency 5kW Inductive Charger for EVs using Dual Side Control.
- A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles.

We hope that this Special Section will increase the interest of the scientific community in this very dynamic area and will motivate the generation of new ideas for future research applications. The Guest Editors express their gratitude to the authors for sending their contributions and to the reviewers for their expertise and dedication to the review process. Finally, our special acknowledgement is dedicated to the EiC of the IEEE Transactions on the Industrial Informatics, Bogdan Wilamowski for his enthusiastic support. Finally, we acknowledge the outstanding work of Dr. Marco Rivera in the organization of this Special Section.

Jose Rodriguez, Guest Editor
Departamento de Electrónica,
Universidad Técnica Federico Santa María,
Valparaíso, Chile

Marian Kazmierkowski, Guest Editor
Institute of Control and Ind. Electronics,
Warsaw University of Technology,
Warsaw, Poland

Jose Espinoza, Guest Editor
Departamento de Ingeniería Eléctrica,
Universidad de Concepción,
Concepción, Chile

Pericle Zanchetta, Guest Editor
Dep. of Electrical and Electronics Engineering,
University of Nottingham, Nottingham, UK

Jose Rodriguez (M’81-SM’94-F10) received the Engineer degree in electrical engineering from the Universidad Federico Santa María (UTFSM), Valparaíso, Chile, in 1977 and the Dr.-Ing. degree in electrical engineering from the University of Erlangen, Erlangen, Germany, in 1985. He has been with the Department of Electronics Engineering, University Federico Santa María since 1977, where he is currently full Professor and Rector. He has co-authored more than 300 journal and conference papers. His main research interests include multilevel inverters, new converter topologies, control of power converters, and adjustable-speed drives. Dr. Rodriguez is member of the Chilean Academy of Engineering and Fellow of the IEEE.

Marian P. Kazmierkowski (M’89-SM’91-F’98) received the M.S., Ph.D. and Dr. Sci. degrees in electrical engineering from the Institute of Control and Industrial Electronics (ICIE), Warsaw, University of Technology, Poland, in 1968, 1972, and 1981, respectively. From 1987 to 2008, he was the Director of ICIE. Since 2003 he has been the Head of the Centre of Excellence on Power Electronics and Intelligent Control for Energy Conservation – PELINCEC at ICIE. He received an Honorary Doctorate degree from Aalborg University in 2004 and from the INP Toulouse, France in 2010. In 2005 he received the Dr.-Ing. Eugene Mittelmann Achievement Award from the IEEE Industrial Electronics Society (IES) and, in 2007, the SIEMENS Research Award. He was V-ce President of the IEEE IES (1999-2001) and the Editor-in-Chief of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS (2004-2006). Currently, he is the Dean of the Engineering Science Department, Polish Academy of Science.

Jose Espinoza (S’92-M’97) received the Ph.D. degree in electrical engineering from Concordia University, Montreal, QC, Canada, in 1997. Since 2006, he has been a Professor in the Department of Electrical Engineering, University of Concepción, where he is engaged in teaching and research in the areas of automatic control and power electronics. He has authored and coauthored more than 100 refereed journal and conference papers.

Pericle Zanchetta (M’00) received the 5 years Laurea Degree in Electronic Engineering from the Technical University of Bari (Italy) in 1993 and the Ph.D. in Electrical Engineering in 1997 from the same University. In 1998 he became Assistant Professor of Power Electronics and control at the Technical University of Bari. In 2001 he became lecturer in control of power electronics systems in the PEMC research group at the University of Nottingham – UK, where he is currently Associate Professor. His main research interests are in the field of power quality and harmonics, active power filters, Repetitive and Model Predictive Control of power converters, Design and Identification using Heuristic optimization strategies. He has published over 160 papers in international Journals and conferences and he is currently secretary of the IEEE-IAS Industrial Power Converter Committee.